Package controller
Class Agent
java.lang.Object
controller.Agent
public class Agent
extends java.lang.Object
agent that runs on every node of the network
-
Field Summary
Fields Modifier and Type Field Description (package private) int
cnt
counter for the number of times a solution was computed(package private) boolean
criterion
Complexity reduction criterion.(package private) java.lang.Double
cumdem
cumulative virtual node demands applied in all attempts to compute a valid mapping these include using trained models and training new models(package private) double[]
currentmodel
(package private) java.lang.Double
fitness
output fitness(package private) int
inputs
number of ANN input nodes(package private) nnetwork.ANNMain
m
Artificial Neural Network for machine learning algorithm(package private) java.lang.Double
maxdem
maximum node demand(package private) int
maxsfcsize
maximum sfc size equals the output of the algorithm(package private) java.lang.Double
mindem
minimum node demand(package private) java.util.ArrayList<java.lang.Double[]>
nodes
cluster nodes(package private) java.util.ArrayList<java.lang.Double[]>
nodessort
cluster nodes sorted(package private) int[]
output
algorithm output(package private) double[]
resmodel
(package private) int[]
solution
solution(package private) int
tem1
number of cluster nodes inputted to ANN, this enables the nodes that the ANN accepts as input to be a subset of the cluster nodes(package private) int[]
tempsol
temporary solution(package private) java.lang.String
type
agent type set "hypergraph" for single agent in multi-domain controller, "default" for other use(package private) java.util.ArrayList<java.lang.Double>
vnfdem
demands of VNF virtual node(package private) int
vnfsize
VNF-graph size -
Constructor Summary
-
Method Summary
Modifier and Type Method Description void
compute(int mod)
the computations executed by the agentvoid
compute_greedy()
Compute distributed greedy algorithm.void
compute_runNN()
Run neural network.void
compute_trainNN()
Train neural network.void
flag0(java.lang.Double[] a)
Flag0 of incoming messages.void
flag1(java.lang.Double[] a)
Flag1 of incoming messages.void
flag2(int a)
Flag2 of incoming messages.void
flag3()
Flag3 of incoming messages.void
flag4(int a)
Flag4 of incoming messages.nnetwork.ANNMain
getANNMain()
int
getclustersize()
Get cluster sized.double[]
getcurrentmodel()
Get current model.java.lang.Double
getfitness()
Get fitness of generated mapping.void
getmessage(network.Message m)
Messages from controller.int[]
getnodes()
Get nodes that the agent computes.void
getnodessort(int index)
Get the sorted nodes.void
getnodew()
Get the weight of the nodes that are computed.int[]
getoutput()
Get computation output.double[]
getresmodel()
Get solution model.void
setmaxsfcsize(int s)
Set maximum sfc size equals the output of the algorithm.void
storedatainfile(java.lang.String dt)
Store data in a file.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Field Details
-
type
java.lang.String typeagent type set "hypergraph" for single agent in multi-domain controller, "default" for other use -
nodes
java.util.ArrayList<java.lang.Double[]> nodescluster nodes -
nodessort
java.util.ArrayList<java.lang.Double[]> nodessortcluster nodes sorted -
vnfdem
java.util.ArrayList<java.lang.Double> vnfdemdemands of VNF virtual node -
tempsol
int[] tempsoltemporary solution -
solution
int[] solutionsolution -
output
int[] outputalgorithm output -
fitness
java.lang.Double fitnessoutput fitness -
mindem
java.lang.Double mindemminimum node demand -
maxdem
java.lang.Double maxdemmaximum node demand -
cumdem
java.lang.Double cumdemcumulative virtual node demands applied in all attempts to compute a valid mapping these include using trained models and training new models -
vnfsize
int vnfsizeVNF-graph size -
tem1
int tem1number of cluster nodes inputted to ANN, this enables the nodes that the ANN accepts as input to be a subset of the cluster nodes -
maxsfcsize
int maxsfcsizemaximum sfc size equals the output of the algorithm -
m
nnetwork.ANNMain mArtificial Neural Network for machine learning algorithm -
inputs
int inputsnumber of ANN input nodes -
cnt
int cntcounter for the number of times a solution was computed -
criterion
boolean criterionComplexity reduction criterion. -
resmodel
double[] resmodel -
currentmodel
double[] currentmodel
-
-
Constructor Details
-
Agent
public Agent() -
Agent
public Agent(java.lang.String type) -
Agent
public Agent(boolean criterion)
-
-
Method Details
-
compute
public void compute(int mod)the computations executed by the agent -
compute_runNN
public void compute_runNN()Run neural network. -
compute_trainNN
public void compute_trainNN()Train neural network. -
compute_greedy
public void compute_greedy()Compute distributed greedy algorithm. -
getresmodel
public double[] getresmodel()Get solution model. -
storedatainfile
public void storedatainfile(java.lang.String dt)Store data in a file. -
flag0
public void flag0(java.lang.Double[] a)Flag0 of incoming messages. -
flag1
public void flag1(java.lang.Double[] a)Flag1 of incoming messages. -
flag2
public void flag2(int a)Flag2 of incoming messages. -
flag3
public void flag3()Flag3 of incoming messages. -
flag4
public void flag4(int a)Flag4 of incoming messages. -
getoutput
public int[] getoutput()Get computation output. -
getfitness
public java.lang.Double getfitness()Get fitness of generated mapping. -
getcurrentmodel
public double[] getcurrentmodel()Get current model. -
getnodes
public int[] getnodes()Get nodes that the agent computes. -
getnodew
public void getnodew()Get the weight of the nodes that are computed. -
getnodessort
public void getnodessort(int index)Get the sorted nodes. -
getclustersize
public int getclustersize()Get cluster sized. -
getmessage
public void getmessage(network.Message m)Messages from controller. -
setmaxsfcsize
public void setmaxsfcsize(int s)Set maximum sfc size equals the output of the algorithm. -
getANNMain
public nnetwork.ANNMain getANNMain()
-