Package ga
Class GA
java.lang.Object
ga.GA
public class GA
extends java.lang.Object
Genetic Algorithm.
-
Field Summary
Fields Modifier and Type Field Description (package private) Best
best
(package private) int
chromes
(package private) double
crossprob
(package private) java.lang.String
del
(package private) double
dif
(package private) double
divider
(package private) int
edges
(package private) java.lang.String
filename
(package private) boolean
first
(package private) int
generations
(package private) java.lang.Double[]
input
(package private) int
k
(package private) Best
lastbest
(package private) double
max
(package private) double
min
(package private) double
mutprob
(package private) NNetwork
nnet
(package private) java.lang.String
objective
(package private) int
outputs
(package private) int[][]
parameter_dom
(package private) java.lang.String[]
params
(package private) Chromosome[]
pop
(package private) Chromosome[]
pop2
(package private) Chromosome[]
pops
(package private) Chromosome[]
pops2
(package private) java.lang.String
storedmodel
(package private) int
supergen
(package private) int
vnfsize
-
Constructor Summary
Constructors Constructor Description GA()
GA(int chroms, int gnrs, int sgnrs, java.lang.String[] params, java.lang.String[] command, double crossprop, double mutprop, int[][] parameter_dom, java.lang.String objective, NNetwork nnet, java.lang.Double[] input, int edges, int outputs, int vnfsize)
GA(int chroms, int gnrs, int sgnrs, java.lang.String[] params, java.lang.String[] command, double crossprop, double mutprop, int[][] parameter_dom, java.lang.String objective, NNetwork nnet, java.lang.String filename, java.lang.String del, int edges, int outputs)
-
Method Summary
Modifier and Type Method Description private void
crossover()
Crossovervoid
genchromefit(Chromosome h)
Computes and store fitness of a single chromosome.void
genfit()
Computes and stores the fitness of each chromosome.void
genfit1()
Computes fitness for pop.void
genfit2()
Compute fitness for pop2.void
genpop()
Generates population randomly.void
genpop_heur()
Generates population heuristically.void
init()
Initialize Genetic Algorithm.void
init2()
Initialize genetic procedures.void
initializebest()
Initialize the object that stores the best solution in each team and group.void
initializelastbest()
Initialize the object that stores the best overall solution.private void
mutation()
Mutationvoid
printbest()
Print current generation best solution.void
printlastbest()
Print current overall best solution.void
printpop()
Prints population of the current generation.private void
range()
Computes the range in the fitness of the population.java.util.ArrayList<java.lang.Double[]>
readmodel(int vnfsize)
Read models from database file.private void
selection()
Selectionvoid
storemodel(java.lang.String b)
Store model.void
superbest(int in)
Stores the best solution of the current generation for the next stage of the algorithm.void
superbest2(int in)
Stores the best solution of the current generation for the next stage of the algorithm.void
updatebest()
Update best solution.void
updatebestmax()
Update best solution when the objective is the maximization of fitness function.void
updatebestmin()
Update best solution when the objective is the minimization of fitness function.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Field Details
-
chromes
int chromes -
generations
int generations -
supergen
int supergen -
nnet
NNetwork nnet -
pop
Chromosome[] pop -
pop2
Chromosome[] pop2 -
pops
Chromosome[] pops -
pops2
Chromosome[] pops2 -
k
int k -
params
java.lang.String[] params -
parameter_dom
int[][] parameter_dom -
objective
java.lang.String objective -
best
Best best -
lastbest
Best lastbest -
min
double min -
max
double max -
dif
double dif -
crossprob
double crossprob -
mutprob
double mutprob -
first
boolean first -
divider
double divider -
edges
int edges -
outputs
int outputs -
input
java.lang.Double[] input -
storedmodel
java.lang.String storedmodel -
vnfsize
int vnfsize -
filename
java.lang.String filename -
del
java.lang.String del
-
-
Constructor Details
-
GA
public GA(int chroms, int gnrs, int sgnrs, java.lang.String[] params, java.lang.String[] command, double crossprop, double mutprop, int[][] parameter_dom, java.lang.String objective, NNetwork nnet, java.lang.String filename, java.lang.String del, int edges, int outputs) -
GA
public GA(int chroms, int gnrs, int sgnrs, java.lang.String[] params, java.lang.String[] command, double crossprop, double mutprop, int[][] parameter_dom, java.lang.String objective, NNetwork nnet, java.lang.Double[] input, int edges, int outputs, int vnfsize) -
GA
public GA()
-
-
Method Details
-
init
public void init()Initialize Genetic Algorithm. -
init2
public void init2()Initialize genetic procedures. -
selection
private void selection()Selection -
crossover
private void crossover()Crossover -
mutation
private void mutation()Mutation -
genpop
public void genpop()Generates population randomly. -
genpop_heur
public void genpop_heur()Generates population heuristically. -
readmodel
public java.util.ArrayList<java.lang.Double[]> readmodel(int vnfsize)Read models from database file. -
initializebest
public void initializebest()Initialize the object that stores the best solution in each team and group. -
initializelastbest
public void initializelastbest()Initialize the object that stores the best overall solution. -
printpop
public void printpop()Prints population of the current generation. -
superbest
public void superbest(int in)Stores the best solution of the current generation for the next stage of the algorithm. -
superbest2
public void superbest2(int in)Stores the best solution of the current generation for the next stage of the algorithm. -
genfit
public void genfit()Computes and stores the fitness of each chromosome. -
genfit1
public void genfit1()Computes fitness for pop. -
genfit2
public void genfit2()Compute fitness for pop2. -
genchromefit
Computes and store fitness of a single chromosome. -
range
private void range()Computes the range in the fitness of the population. -
updatebest
public void updatebest()Update best solution. -
updatebestmin
public void updatebestmin()Update best solution when the objective is the minimization of fitness function. -
updatebestmax
public void updatebestmax()Update best solution when the objective is the maximization of fitness function. -
printlastbest
public void printlastbest()Print current overall best solution. -
printbest
public void printbest()Print current generation best solution. -
storemodel
public void storemodel(java.lang.String b)Store model.
-